A proof of a sumset conjecture of Erdős
Abstract: In this paper we show that every set $A \subset \mathbb{N}$ with positive density contains $B+C$ for some pair $B,C$ of infinite subsets of $\mathbb{N}$, settling a conjecture of Erd\H{o}s. The proof features two different decompositions of an arbitrary bounded sequence into a structured component and a pseudo-random component. Our methods are quite general, allowing us to prove a version of this conjecture for countable amenable groups.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.