Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Towards Theory and Applications of Generalized Categories to Areas of Type Theory and Categorical Logic (1803.00180v1)

Published 1 Mar 2018 in math.CT

Abstract: Motivated by potential applications to theoretical computer science, in particular those areas where the Curry-Howard correspondence plays an important role, as well as by the ongoing search in pure mathematics for feasible approaches to higher category theory, we undertake a detailed study of a new mathematical abstraction, the generalized category. It is a partially defined monoid equipped with endomorphism maps defining sources and targets on arbitrary elements, possibly allowing a proximal behavior with respect to composition. We first present a formal introduction to the theory of generalized categories. We describe functors, equivalences, natural transformations, adjoints, and limits in the generalized setting. Next we indicate how the theory of monads extends to generalized categories. Next, we present a variant of the calculus of deductive systems developed by Lambek, and give a generalization of the Curry-Howard-Lambek theorem giving an equivalence between the category of typed lambda-calculi and the category of cartesian closed categories and exponential-preserving morphisms that leverages the theory of generalized categories. Next, we develop elementary topos theory in the generalized setting of ideal toposes, utilizing the formalism developed for the Curry-Howard-Lambek theorem. In particular, we prove that ideal toposes possess the same Heyting algebra structure and squares of adjoints that ordinary toposes do. Finally, we develop generalized sheaves, and show that such categories form ideal toposes. We extend Lawvere and Tierney's theorem relating $j$-sheaves and sheaves in the sense of Grothendieck to the generalized setting.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.