Papers
Topics
Authors
Recent
2000 character limit reached

A Feature Clustering Approach Based on Histogram of Oriented Optical Flow and Superpixels (1803.00031v1)

Published 28 Feb 2018 in cs.CV

Abstract: Visual feature clustering is one of the cost-effective approaches to segment objects in videos. However, the assumptions made for developing the existing algorithms prevent them from being used in situations like segmenting an unknown number of static and moving objects under heavy camera movements. This paper addresses the problem by introducing a clustering approach based on superpixels and short-term Histogram of Oriented Optical Flow (HOOF). Salient Dither Pattern Feature (SDPF) is used as the visual feature to track the flow and Simple Linear Iterative Clustering (SLIC) is used for obtaining the superpixels. This new clustering approach is based on merging superpixels by comparing short term local HOOF and a color cue to form high-level semantic segments. The new approach was compared with one of the latest feature clustering approaches based on K-Means in eight-dimensional space and the results revealed that the new approach is better by means of consistency, completeness, and spatial accuracy. Further, the new approach completely solved the problem of not knowing the number of objects in a scene.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.