Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization over the Boolean Hypercube via Sums of Nonnegative Circuit Polynomials (1802.10004v1)

Published 27 Feb 2018 in cs.DS, cs.CC, math.AG, and math.OC

Abstract: Various key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems are based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate the analysis of optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS based certificates remain valid: First, for polynomials, which are nonnegative over the $n$-variate boolean hypercube with constraints of degree $d$ there exists a SONC certificate of degree at most $n+d$. Second, if there exists a degree $d$ SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree $d$ SONC certificate, that includes at most $n{O(d)}$ nonnegative circuit polynomials.

Citations (25)

Summary

We haven't generated a summary for this paper yet.