Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hierarchy of eigencomputations for polynomial optimization on the sphere (2310.17827v2)

Published 27 Oct 2023 in math.OC, cs.DS, math.AG, and quant-ph

Abstract: We introduce a convergent hierarchy of lower bounds on the minimum value of a real form over the unit sphere. The main practical advantage of our hierarchy over the real sum-of-squares (RSOS) hierarchy is that the lower bound at each level of our hierarchy is obtained by a minimum eigenvalue computation, as opposed to the full semidefinite program (SDP) required at each level of RSOS. In practice, this allows us to compute bounds on much larger forms than are computationally feasible for RSOS. Our hierarchy outperforms previous alternatives to RSOS, both asymptotically and in numerical experiments. We obtain our hierarchy by proving a reduction from real optimization on the sphere to Hermitian optimization on the sphere, and invoking the Hermitian sum-of-squares (HSOS) hierarchy. This opens the door to using other Hermitian optimization techniques for real optimization, and gives a path towards developing spectral hierarchies for more general constrained real optimization problems. To this end, we use our techniques to develop a hierarchy of eigencomputations for computing the real tensor spectral norm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com