Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Porous medium equation with a blow-up nonlinearity and a non-decreasing constraint (1802.09570v1)

Published 26 Feb 2018 in math.AP

Abstract: The final goal of this paper is to prove existence of local (strong) solutions to a (fully nonlinear) porous medium equation with blow-up term and nondecreasing constraint. To this end, the equation, arising in the context of Damage Mechanics, is reformulated as a mixed form of two different types of doubly nonlinear evolution equations. Global (in time) solutions to some approximate problems are constructed by performing a time discretization argument and by taking advantage of energy techniques based on specific structures of the equation. Moreover, a variational comparison principle for (possibly non-unique) approximate solutions is established and it also enables us to obtain a local solution as a limit of approximate ones.

Summary

We haven't generated a summary for this paper yet.