Papers
Topics
Authors
Recent
2000 character limit reached

Wigner-Type Theorem on transition probability preserving maps in semifinite factors

Published 26 Feb 2018 in math.OA | (1802.09157v1)

Abstract: The Wigner's theorem, which is one of the cornerstones of the mathematical formulation of quantum mechanics, asserts that every symmetry of quantum system is unitary or anti-unitary. This classical result was first given by Wigner in 1931. Thereafter it has been proved and generalized in various ways by many authors. Recently, G. P. Geh\'{e}r extended Wigner's and Moln\'{a}r's theorems and characterized the transformations on the Grassmann space of all rank-$n$ projections which preserve the transition probability. The aim of this paper is to provide a new approach to describe the general form of the transition probability preserving (not necessarily bijective) maps between Grassmann spaces. As a byproduct, we are able to generalize the results of Moln\'{a}r and G. P. Geh\'{e}r.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.