Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian inverse problems with partial observations

Published 25 Feb 2018 in math.ST and stat.TH | (1802.08993v2)

Abstract: We study a nonparametric Bayesian approach to linear inverse problems under discrete observations. We use the discrete Fourier transform to convert our model into a truncated Gaussian sequence model, that is closely related to the classical Gaussian sequence model. Upon placing the truncated series prior on the unknown parameter, we show that as the number of observations $n\rightarrow\infty,$ the corresponding posterior distribution contracts around the true parameter at a rate depending on the smoothness of the true parameter and the prior, and the ill-posedness degree of the problem. Correct combinations of these values lead to optimal posterior contraction rates (up to logarithmic factors). Similarly, the frequentist coverage of Bayesian credible sets is shown to be dependent on a combination of smoothness of the true parameter and the prior, and the ill-posedness of the problem. Oversmoothing priors lead to zero coverage, while undersmoothing priors produce highly conservative results. Finally, we illustrate our theoretical results by numerical examples.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.