Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extremely Fast Decision Tree

Published 24 Feb 2018 in cs.LG and stat.ML | (1802.08780v1)

Abstract: We introduce a novel incremental decision tree learning algorithm, Hoeffding Anytime Tree, that is statistically more efficient than the current state-of-the-art, Hoeffding Tree. We demonstrate that an implementation of Hoeffding Anytime Tree---"Extremely Fast Decision Tree", a minor modification to the MOA implementation of Hoeffding Tree---obtains significantly superior prequential accuracy on most of the largest classification datasets from the UCI repository. Hoeffding Anytime Tree produces the asymptotic batch tree in the limit, is naturally resilient to concept drift, and can be used as a higher accuracy replacement for Hoeffding Tree in most scenarios, at a small additional computational cost.

Citations (129)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.