Papers
Topics
Authors
Recent
2000 character limit reached

Learning Topic Models by Neighborhood Aggregation

Published 22 Feb 2018 in stat.ML and cs.LG | (1802.08012v6)

Abstract: Topic models are frequently used in machine learning owing to their high interpretability and modular structure. However, extending a topic model to include a supervisory signal, to incorporate pre-trained word embedding vectors and to include a nonlinear output function is not an easy task because one has to resort to a highly intricate approximate inference procedure. The present paper shows that topic modeling with pre-trained word embedding vectors can be viewed as implementing a neighborhood aggregation algorithm where messages are passed through a network defined over words. From the network view of topic models, nodes correspond to words in a document and edges correspond to either a relationship describing co-occurring words in a document or a relationship describing the same word in the corpus. The network view allows us to extend the model to include supervisory signals, incorporate pre-trained word embedding vectors and include a nonlinear output function in a simple manner. In experiments, we show that our approach outperforms the state-of-the-art supervised Latent Dirichlet Allocation implementation in terms of held-out document classification tasks.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.