Papers
Topics
Authors
Recent
2000 character limit reached

From Hamiltonian to zero curvature formulation for classical integrable boundary conditions

Published 21 Feb 2018 in math-ph, hep-th, math.MP, and nlin.SI | (1802.07593v2)

Abstract: We reconcile the Hamiltonian formalism and the zero curvature representation in the approach to integrable boundary conditions for a classical integrable system in 1+1 space-time dimensions. We start from an ultralocal Poisson algebra involving a Lax matrix and two (dynamical) boundary matrices. Sklyanin's formula for the double-row transfer matrix is used to derive Hamilton's equations of motion for both the Lax matrix {\bf and} the boundary matrices in the form of zero curvature equations. A key ingredient of the method is a boundary version of the Semenov-Tian-Shansky formula for the generating function of the time-part of a Lax pair. The procedure is illustrated on the finite Toda chain for which we derive Lax pairs of size $2\times 2$ for previously known Hamiltonians of type $BC_N$ and $D_N$ corresponding to constant and dynamical boundary matrices respectively.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.