Papers
Topics
Authors
Recent
2000 character limit reached

Improving Recommender Systems Beyond the Algorithm

Published 21 Feb 2018 in cs.HC and cs.IR | (1802.07578v1)

Abstract: Recommender systems rely heavily on the predictive accuracy of the learning algorithm. Most work on improving accuracy has focused on the learning algorithm itself. We argue that this algorithmic focus is myopic. In particular, since learning algorithms generally improve with more and better data, we propose shaping the feedback generation process as an alternate and complementary route to improving accuracy. To this effect, we explore how changes to the user interface can impact the quality and quantity of feedback data -- and therefore the learning accuracy. Motivated by information foraging theory, we study how feedback quality and quantity are influenced by interface design choices along two axes: information scent and information access cost. We present a user study of these interface factors for the common task of picking a movie to watch, showing that these factors can effectively shape and improve the implicit feedback data that is generated while maintaining the user experience.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.