Spectral asymptotics for Dirichlet to Neumann operator (1802.07524v1)
Abstract: We consider eigenvalues of the Dirichlet-to-Neumann operator for Laplacian in the domain (or manifold) with edges and establish the asymptotics of the eigenvalue counting function \begin{equation*} \mathsf{N}(\lambda)= \kappa_0\lambdad +O(\lambda{d-1})\qquad \text{as}\ \ \lambda\to+\infty, \end{equation*} where $d$ is dimension of the boundary. Further, in certain cases we establish two-term asymptotics \begin{equation*} \mathsf{N}(\lambda)= \kappa_0\lambdad+\kappa_1\lambda{d-1}+o(\lambda{d-1})\qquad \text{as}\ \ \lambda\to+\infty. \end{equation*} We also establish improved asymptotics for Riesz means.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.