Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TAP-DLND 1.0 : A Corpus for Document Level Novelty Detection (1802.06950v1)

Published 20 Feb 2018 in cs.CL

Abstract: Detecting novelty of an entire document is an AI frontier problem that has widespread NLP applications, such as extractive document summarization, tracking development of news events, predicting impact of scholarly articles, etc. Important though the problem is, we are unaware of any benchmark document level data that correctly addresses the evaluation of automatic novelty detection techniques in a classification framework. To bridge this gap, we present here a resource for benchmarking the techniques for document level novelty detection. We create the resource via event-specific crawling of news documents across several domains in a periodic manner. We release the annotated corpus with necessary statistics and show its use with a developed system for the problem in concern.

Citations (15)

Summary

We haven't generated a summary for this paper yet.