Papers
Topics
Authors
Recent
2000 character limit reached

Node Centralities and Classification Performance for Characterizing Node Embedding Algorithms

Published 18 Feb 2018 in cs.LG, cs.SI, and stat.ML | (1802.06368v1)

Abstract: Embedding graph nodes into a vector space can allow the use of machine learning to e.g. predict node classes, but the study of node embedding algorithms is immature compared to the natural language processing field because of a diverse nature of graphs. We examine the performance of node embedding algorithms with respect to graph centrality measures that characterize diverse graphs, through systematic experiments with four node embedding algorithms, four or five graph centralities, and six datasets. Experimental results give insights into the properties of node embedding algorithms, which can be a basis for further research on this topic.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.