Papers
Topics
Authors
Recent
2000 character limit reached

A noncommutative 2-sphere generated by the quantum complex plane (1802.06142v1)

Published 16 Feb 2018 in math.QA and math.OA

Abstract: S. L. Woronowicz's theory of introducing C*-algebras generated by unbounded elements is applied to q-normal operators satisfying the defining relation of the quantum complex plane. The unique non-degenerate C*-algebra of bounded operators generated by a q-normal operator is computed and an abstract description is given by using crossed product algebras. If the spectrum of the modulus of the q-normal operator is the positive half line, this C*-algebra will be considered as the algebra of continuous functions on the quantum complex plane vanishing at infinity, and its unitization will be viewed as the algebra of continuous functions on a quantum 2-sphere.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.