Four moments theorems on Markov chaos (1802.06092v1)
Abstract: We obtain quantitative Four Moments Theorems establishing convergence of the laws of elements of a Markov chaos to a Pearson distribution, where the only assumption we make on the Pearson distribution is that it admits four moments. While in general one cannot use moments to establish convergence to a heavy-tailed distributions, we provide a context in which only the first four moments suffices. These results are obtained by proving a general carr\'e du champ bound on the distance between laws of random variables in the domain of a Markov diffusion generator and invariant measures of diffusions. For elements of a Markov chaos, this bound can be reduced to just the first four moments.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.