Papers
Topics
Authors
Recent
Search
2000 character limit reached

Donaldson-Thomas invariants, torus knots, and lattice paths

Published 13 Feb 2018 in hep-th, math-ph, math.CO, math.MP, math.QA, and math.RT | (1802.04573v2)

Abstract: In this paper we find and explore the correspondence between quivers, torus knots, and combinatorics of counting paths. Our first result pertains to quiver representation theory -- we find explicit formulae for classical generating functions and Donaldson-Thomas invariants of an arbitrary symmetric quiver. We then focus on quivers corresponding to $(r,s)$ torus knots and show that their classical generating functions, in the extremal limit and framing $rs$, are generating functions of lattice paths under the line of the slope $r/s$. Generating functions of such paths satisfy extremal A-polynomial equations, which immediately follows after representing them in terms of the Duchon grammar. Moreover, these extremal A-polynomial equations encode Donaldson-Thomas invariants, which provides an interesting example of algebraicity of generating functions of these invariants. We also find a quantum generalization of these statements, i.e. a relation between motivic quiver generating functions, quantum extremal knot invariants, and $q$-weighted path counting. Finally, in the case of the unknot, we generalize this correspondence to the full HOMFLY-PT invariants and counting of Schr\"oder paths.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.