Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On a Java library to perform S-expansions of Lie algebras (1802.04468v1)

Published 13 Feb 2018 in math-ph, hep-th, and math.MP

Abstract: The S-expansion method is a generalization of the In\"{o}n\"{u}-Wigner (IW) contraction that allows to study new non-trivial relations between different Lie algebras. Basically, this method combines a Lie algebra $\mathcal{G}$ with a finite abelian semigroup $S$ in such a way that a new S-expanded algebra $\mathcal{G}{S}$ can be defined. When the semigroup has a zero-element and/or a specific decomposition, which is said to be resonant with the subspace structure of the original algebra, then it is possible to extract smaller algebras from $\mathcal{G}{S}$ which have interesting properties. Here we give a brief description of the S-expansion, its applications and the main motivations that lead us to elaborate a Java library, which automatizes this method and allows us to represent and to classify all possible S-expansions of a given Lie algebra.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.