Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SparseMAP: Differentiable Sparse Structured Inference (1802.04223v2)

Published 12 Feb 2018 in stat.ML, cs.CL, and cs.LG

Abstract: Structured prediction requires searching over a combinatorial number of structures. To tackle it, we introduce SparseMAP: a new method for sparse structured inference, and its natural loss function. SparseMAP automatically selects only a few global structures: it is situated between MAP inference, which picks a single structure, and marginal inference, which assigns probability mass to all structures, including implausible ones. Importantly, SparseMAP can be computed using only calls to a MAP oracle, making it applicable to problems with intractable marginal inference, e.g., linear assignment. Sparsity makes gradient backpropagation efficient regardless of the structure, enabling us to augment deep neural networks with generic and sparse structured hidden layers. Experiments in dependency parsing and natural language inference reveal competitive accuracy, improved interpretability, and the ability to capture natural language ambiguities, which is attractive for pipeline systems.

Citations (119)

Summary

We haven't generated a summary for this paper yet.