Papers
Topics
Authors
Recent
2000 character limit reached

Exact and efficient inference for Partial Bayes problems

Published 12 Feb 2018 in stat.ME | (1802.04050v1)

Abstract: Bayesian methods are useful for statistical inference. However, real-world problems can be challenging using Bayesian methods when the data analyst has only limited prior knowledge. In this paper we consider a class of problems, called Partial Bayes problems, in which the prior information is only partially available. Taking the recently proposed Inferential Model approach, we develop a general inference framework for Partial Bayes problems, and derive both exact and efficient solutions. In addition to the theoretical investigation, numerical results and real applications are used to demonstrate the superior performance of the proposed method.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.