Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Log Analysis on the Cloud Using MapReduce

Published 10 Feb 2018 in cs.DC | (1802.03589v1)

Abstract: In this paper we describe our work on designing a web based, distributed data analysis system based on the popular MapReduce framework deployed on a small cloud; developed specifically for analyzing web server logs. The log analysis system consists of several cluster nodes, it splits the large log files on a distributed file system and quickly processes them using MapReduce programming model. The cluster is created using an open source cloud infrastructure, which allows us to easily expand the computational power by adding new nodes. This gives us the ability to automatically resize the cluster according to the data analysis requirements. We implemented MapReduce programs for basic log analysis needs like frequency analysis, error detection, busy hour detection etc. as well as more complex analyses which require running several jobs. The system can automatically identify and analyze several web server log types such as Apache, IIS, Squid etc. We use open source projects for creating the cloud infrastructure and running MapReduce jobs.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.