Papers
Topics
Authors
Recent
2000 character limit reached

Metric Learning via Maximizing the Lipschitz Margin Ratio

Published 9 Feb 2018 in cs.LG | (1802.03464v1)

Abstract: In this paper, we propose the Lipschitz margin ratio and a new metric learning framework for classification through maximizing the ratio. This framework enables the integration of both the inter-class margin and the intra-class dispersion, as well as the enhancement of the generalization ability of a classifier. To introduce the Lipschitz margin ratio and its associated learning bound, we elaborate the relationship between metric learning and Lipschitz functions, as well as the representability and learnability of the Lipschitz functions. After proposing the new metric learning framework based on the introduced Lipschitz margin ratio, we also prove that some well known metric learning algorithms can be shown as special cases of the proposed framework. In addition, we illustrate the framework by implementing it for learning the squared Mahalanobis metric, and by demonstrating its encouraging results on eight popular datasets of machine learning.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.