Papers
Topics
Authors
Recent
2000 character limit reached

ATPboost: Learning Premise Selection in Binary Setting with ATP Feedback

Published 9 Feb 2018 in cs.AI, cs.LO, and stat.ML | (1802.03375v1)

Abstract: ATPboost is a system for solving sets of large-theory problems by interleaving ATP runs with state-of-the-art machine learning of premise selection from the proofs. Unlike many previous approaches that use multi-label setting, the learning is implemented as binary classification that estimates the pairwise-relevance of (theorem, premise) pairs. ATPboost uses for this the XGBoost gradient boosting algorithm, which is fast and has state-of-the-art performance on many tasks. Learning in the binary setting however requires negative examples, which is nontrivial due to many alternative proofs. We discuss and implement several solutions in the context of the ATP/ML feedback loop, and show that ATPboost with such methods significantly outperforms the k-nearest neighbors multilabel classifier.

Citations (40)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.