Papers
Topics
Authors
Recent
2000 character limit reached

mGPfusion: Predicting protein stability changes with Gaussian process kernel learning and data fusion

Published 8 Feb 2018 in stat.ML, q-bio.BM, and q-bio.QM | (1802.02852v2)

Abstract: Proteins are commonly used by biochemical industry for numerous processes. Refining these proteins' properties via mutations causes stability effects as well. Accurate computational method to predict how mutations affect protein stability are necessary to facilitate efficient protein design. However, accuracy of predictive models is ultimately constrained by the limited availability of experimental data. We have developed mGPfusion, a novel Gaussian process (GP) method for predicting protein's stability changes upon single and multiple mutations. This method complements the limited experimental data with large amounts of molecular simulation data. We introduce a Bayesian data fusion model that re-calibrates the experimental and in silico data sources and then learns a predictive GP model from the combined data. Our protein-specific model requires experimental data only regarding the protein of interest and performs well even with few experimental measurements. The mGPfusion models proteins by contact maps and infers the stability effects caused by mutations with a mixture of graph kernels. Our results show that mGPfusion outperforms state-of-the-art methods in predicting protein stability on a dataset of 15 different proteins and that incorporating molecular simulation data improves the model learning and prediction accuracy.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.