Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Exact Semidefinite Formulations for a Class of (Random and Non-Random) Nonconvex Quadratic Programs (1802.02688v2)

Published 8 Feb 2018 in math.OC

Abstract: We study a class of quadratically constrained quadratic programs (QCQPs), called {\em diagonal QCQPs\/}, which contain no off-diagonal terms $x_j x_k$ for $j \ne k$, and we provide a sufficient condition on the problem data guaranteeing that the basic Shor semidefinite relaxation is exact. Our condition complements and refines those already present in the literature and can be checked in polynomial time. We then extend our analysis from diagonal QCQPs to general QCQPs, i.e., ones with no particular structure. By reformulating a general QCQP into diagonal form, we establish new, polynomial-time-checkable sufficient conditions for the semidefinite relaxations of general QCQPs to be exact. Finally, these ideas are extended to show that a class of random general QCQPs has exact semidefinite relaxations with high probability as long as the number of constraints grows no faster than a fixed polynomial in the number of variables. To the best of our knowledge, this is the first result establishing the exactness of the semidefinite relaxation for random general QCQPs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.