Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised word sense disambiguation in dynamic semantic spaces

Published 7 Feb 2018 in cs.CL | (1802.02605v2)

Abstract: In this paper, we are mainly concerned with the ability to quickly and automatically distinguish word senses in dynamic semantic spaces in which new terms and new senses appear frequently. Such spaces are built '"on the fly" from constantly evolving data sets such as Wikipedia, repositories of patent grants and applications, or large sets of legal documents for Technology Assisted Review and e-discovery. This immediacy rules out supervision as well as the use of a priori training sets. We show that the various senses of a term can be automatically made apparent with a simple clustering algorithm, each sense being a vector in the semantic space. While we only consider here semantic spaces built by using random vectors, this algorithm should work with any kind of embedding, provided meaningful similarities between terms can be computed and do fulfill at least the two basic conditions that terms which close meanings have high similarities and terms with unrelated meanings have near-zero similarities.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.