Tropicalized quartics and canonical embeddings for tropical curves of genus 3 (1802.02440v2)
Abstract: Brodsky, Joswig, Morrison and Sturmfels showed that not all abstract tropical curves of genus $3$ can be realized as a tropicalization of a quartic in the euclidean plane. In this article, we focus on the interior of the maximal cones in the moduli space and classify all curves which can be realized as a faithful tropicalization in a tropical plane. Reflecting the algebro-geometric world, we show that these are exactly those which are not realizably hyperelliptic. Our approach is constructive: For any not realizably hyperelliptic curve, we explicitly construct a realizable model of the tropical plane and a faithfully tropicalized quartic in it. These constructions rely on modifications resp. tropical refinements. Conversely, we prove that any realizably hyperelliptic curve cannot be embedded in such a fashion. For that, we rely on the theory of tropical divisors and embeddings from linear systems, and recent advances in the realizability of sections of the tropical canonical divisor.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.