Stratifications of affine Deligne-Lusztig varieties (1802.02225v1)
Abstract: Affine Deligne-Lusztig varieties are analogues of Deligne-Lusztig varieties in the context of affine flag varieties and affine Grassmannians. They are closely related to moduli spaces of $p$-divisible groups in positive characteristic, and thus to arithmetic properties of Shimura varieties. We compare stratifications of affine Deligne-Lusztig varieties attached to a basic element $b$. In particular, we show that the stratification defined by Chen and Viehmann using the relative position to elements of the group $J_b$, the $\sigma$-centralizer of $b$, coincides with the Bruhat-Tits stratification in all cases of Coxeter type, as defined by X. He and the author.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.