Papers
Topics
Authors
Recent
Search
2000 character limit reached

Toward Marker-free 3D Pose Estimation in Lifting: A Deep Multi-view Solution

Published 6 Feb 2018 in cs.CV | (1802.01741v1)

Abstract: Lifting is a common manual material handling task performed in the workplaces. It is considered as one of the main risk factors for Work-related Musculoskeletal Disorders. To improve work place safety, it is necessary to assess musculoskeletal and biomechanical risk exposures associated with these tasks, which requires very accurate 3D pose. Existing approaches mainly utilize marker-based sensors to collect 3D information. However, these methods are usually expensive to setup, time-consuming in process, and sensitive to the surrounding environment. In this study, we propose a multi-view based deep perceptron approach to address aforementioned limitations. Our approach consists of two modules: a "view-specific perceptron" network extracts rich information independently from the image of view, which includes both 2D shape and hierarchical texture information; while a "multi-view integration" network synthesizes information from all available views to predict accurate 3D pose. To fully evaluate our approach, we carried out comprehensive experiments to compare different variants of our design. The results prove that our approach achieves comparable performance with former marker-based methods, i.e. an average error of $14.72 \pm 2.96$ mm on the lifting dataset. The results are also compared with state-of-the-art methods on HumanEva-I dataset, which demonstrates the superior performance of our approach.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.