Papers
Topics
Authors
Recent
Search
2000 character limit reached

Inverse regression for ridge recovery II: Numerics

Published 5 Feb 2018 in math.NA | (1802.01541v2)

Abstract: We investigate the application of sufficient dimension reduction (SDR) to a noiseless data set derived from a deterministic function of several variables. In this context, SDR provides a framework for ridge recovery. In this second part, we explore the numerical subtleties associated with using two inverse regression methods---sliced inverse regression (SIR) and sliced average variance estimation (SAVE)---for ridge recovery. This includes a detailed numerical analysis of the eigenvalues of the resulting matrices and the subspaces spanned by their columns. After this analysis, we demonstrate the methods on several numerical test problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.