Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Remarks on the self-shrinking Clifford torus (1802.01423v3)

Published 5 Feb 2018 in math.DG, math.AP, and math.SG

Abstract: On the one hand, we prove that the Clifford torus in $\mathbb{C}2$ is unstable for Lagrangian mean curvature flow under arbitrarily small Hamiltonian perturbations, even though it is Hamiltonian $F$-stable and locally area minimising under Hamiltonian variations. On the other hand, we show that the Clifford torus is rigid: it is locally unique as a self-shrinker for mean curvature flow, despite having infinitesimal deformations which do not arise from rigid motions. The proofs rely on analysing higher order phenomena: specifically, showing that the Clifford torus is not a local entropy minimiser even under Hamiltonian variations, and demonstrating that infinitesimal deformations which do not generate rigid motions are genuinely obstructed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.