Papers
Topics
Authors
Recent
2000 character limit reached

Remarks on the self-shrinking Clifford torus

Published 5 Feb 2018 in math.DG, math.AP, and math.SG | (1802.01423v3)

Abstract: On the one hand, we prove that the Clifford torus in $\mathbb{C}2$ is unstable for Lagrangian mean curvature flow under arbitrarily small Hamiltonian perturbations, even though it is Hamiltonian $F$-stable and locally area minimising under Hamiltonian variations. On the other hand, we show that the Clifford torus is rigid: it is locally unique as a self-shrinker for mean curvature flow, despite having infinitesimal deformations which do not arise from rigid motions. The proofs rely on analysing higher order phenomena: specifically, showing that the Clifford torus is not a local entropy minimiser even under Hamiltonian variations, and demonstrating that infinitesimal deformations which do not generate rigid motions are genuinely obstructed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.