Remarks on the self-shrinking Clifford torus (1802.01423v3)
Abstract: On the one hand, we prove that the Clifford torus in $\mathbb{C}2$ is unstable for Lagrangian mean curvature flow under arbitrarily small Hamiltonian perturbations, even though it is Hamiltonian $F$-stable and locally area minimising under Hamiltonian variations. On the other hand, we show that the Clifford torus is rigid: it is locally unique as a self-shrinker for mean curvature flow, despite having infinitesimal deformations which do not arise from rigid motions. The proofs rely on analysing higher order phenomena: specifically, showing that the Clifford torus is not a local entropy minimiser even under Hamiltonian variations, and demonstrating that infinitesimal deformations which do not generate rigid motions are genuinely obstructed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.