Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomization Tests that Condition on Non-Categorical Covariate Balance (1802.01018v3)

Published 3 Feb 2018 in stat.ME

Abstract: A benefit of randomized experiments is that covariate distributions of treatment and control groups are balanced on average, resulting in simple unbiased estimators for treatment effects. However, it is possible that a particular randomization yields covariate imbalances that researchers want to address in the analysis stage through adjustment or other methods. Here we present a randomization test that conditions on covariate balance by only considering treatment assignments that are similar to the observed one in terms of covariate balance. Previous conditional randomization tests have only allowed for categorical covariates, while our randomization test allows for any type of covariate. Through extensive simulation studies, we find that our conditional randomization test is more powerful than unconditional randomization tests and other conditional tests. Furthermore, we find that our conditional randomization test is valid (1) unconditionally across levels of covariate balance, and (2) conditional on particular levels of covariate balance. Meanwhile, unconditional randomization tests are valid for (1) but not (2). Finally, we find that our conditional randomization test is similar to a randomization test that uses a model-adjusted test statistic.

Summary

We haven't generated a summary for this paper yet.