Papers
Topics
Authors
Recent
2000 character limit reached

Randomization Tests that Condition on Non-Categorical Covariate Balance

Published 3 Feb 2018 in stat.ME | (1802.01018v3)

Abstract: A benefit of randomized experiments is that covariate distributions of treatment and control groups are balanced on average, resulting in simple unbiased estimators for treatment effects. However, it is possible that a particular randomization yields covariate imbalances that researchers want to address in the analysis stage through adjustment or other methods. Here we present a randomization test that conditions on covariate balance by only considering treatment assignments that are similar to the observed one in terms of covariate balance. Previous conditional randomization tests have only allowed for categorical covariates, while our randomization test allows for any type of covariate. Through extensive simulation studies, we find that our conditional randomization test is more powerful than unconditional randomization tests and other conditional tests. Furthermore, we find that our conditional randomization test is valid (1) unconditionally across levels of covariate balance, and (2) conditional on particular levels of covariate balance. Meanwhile, unconditional randomization tests are valid for (1) but not (2). Finally, we find that our conditional randomization test is similar to a randomization test that uses a model-adjusted test statistic.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.