Papers
Topics
Authors
Recent
Search
2000 character limit reached

Plan Explanations as Model Reconciliation -- An Empirical Study

Published 3 Feb 2018 in cs.AI | (1802.01013v1)

Abstract: Recent work in explanation generation for decision making agents has looked at how unexplained behavior of autonomous systems can be understood in terms of differences in the model of the system and the human's understanding of the same, and how the explanation process as a result of this mismatch can be then seen as a process of reconciliation of these models. Existing algorithms in such settings, while having been built on contrastive, selective and social properties of explanations as studied extensively in the psychology literature, have not, to the best of our knowledge, been evaluated in settings with actual humans in the loop. As such, the applicability of such explanations to human-AI and human-robot interactions remains suspect. In this paper, we set out to evaluate these explanation generation algorithms in a series of studies in a mock search and rescue scenario with an internal semi-autonomous robot and an external human commander. We demonstrate to what extent the properties of these algorithms hold as they are evaluated by humans, and how the dynamics of trust between the human and the robot evolve during the process of these interactions.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.