Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convolutional neural network-based regression for depth prediction in digital holography

Published 2 Feb 2018 in cs.CV and eess.IV | (1802.00664v1)

Abstract: Digital holography enables us to reconstruct objects in three-dimensional space from holograms captured by an imaging device. For the reconstruction, we need to know the depth position of the recoded object in advance. In this study, we propose depth prediction using convolutional neural network (CNN)-based regression. In the previous researches, the depth of an object was estimated through reconstructed images at different depth positions from a hologram using a certain metric that indicates the most focused depth position; however, such a depth search is time-consuming. The CNN of the proposed method can directly predict the depth position with millimeter precision from holograms.

Citations (51)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.