Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Structure Relations of Classical Orthogonal Polynomials in the Quadratic and $q$-Quadratic Variable (1801.10554v3)

Published 31 Jan 2018 in math.CA

Abstract: We prove an equivalence between the existence of the first structure relation satisfied by a sequence of monic orthogonal polynomials ${P_n}{n=0}{\infty}$, the orthogonality of the second derivatives ${\mathbb{D}{x}2P_n}_{n= 2}{\infty}$ and a generalized Sturm-Liouville type equation. Our treatment of the generalized Bochner theorem leads to explicit solutions of the difference equation [Vinet L., Zhedanov A., J. Comput. Appl. Math. 211 (2008), 45-56], which proves that the only monic orthogonal polynomials that satisfy the first structure relation are Wilson polynomials, continuous dual Hahn polynomials, Askey-Wilson polynomials and their special or limiting cases as one or more parameters tend to $\infty$. This work extends our previous result [arXiv:1711.03349] concerning a conjecture due to Ismail. We also derive a second structure relation for polynomials satisfying the first structure relation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.