Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Attention-Based Word-Level Interaction Model: Relation Detection for Knowledge Base Question Answering (1801.09893v1)

Published 30 Jan 2018 in cs.CL

Abstract: Relation detection plays a crucial role in Knowledge Base Question Answering (KBQA) because of the high variance of relation expression in the question. Traditional deep learning methods follow an encoding-comparing paradigm, where the question and the candidate relation are represented as vectors to compare their semantic similarity. Max- or average- pooling operation, which compresses the sequence of words into fixed-dimensional vectors, becomes the bottleneck of information. In this paper, we propose to learn attention-based word-level interactions between questions and relations to alleviate the bottleneck issue. Similar to the traditional models, the question and relation are firstly represented as sequences of vectors. Then, instead of merging the sequence into a single vector with pooling operation, soft alignments between words from the question and the relation are learned. The aligned words are subsequently compared with the convolutional neural network (CNN) and the comparison results are merged finally. Through performing the comparison on low-level representations, the attention-based word-level interaction model (ABWIM) relieves the information loss issue caused by merging the sequence into a fixed-dimensional vector before the comparison. The experimental results of relation detection on both SimpleQuestions and WebQuestions datasets show that ABWIM achieves state-of-the-art accuracy, demonstrating its effectiveness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hongzhi Zhang (33 papers)
  2. Guandong Xu (93 papers)
  3. Xiao Liang (132 papers)
  4. Tinglei Huang (1 paper)
  5. Kun Fu (40 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.