Papers
Topics
Authors
Recent
2000 character limit reached

Object-based reasoning in VQA

Published 29 Jan 2018 in cs.CV | (1801.09718v1)

Abstract: Visual Question Answering (VQA) is a novel problem domain where multi-modal inputs must be processed in order to solve the task given in the form of a natural language. As the solutions inherently require to combine visual and natural language processing with abstract reasoning, the problem is considered as AI-complete. Recent advances indicate that using high-level, abstract facts extracted from the inputs might facilitate reasoning. Following that direction we decided to develop a solution combining state-of-the-art object detection and reasoning modules. The results, achieved on the well-balanced CLEVR dataset, confirm the promises and show significant, few percent improvements of accuracy on the complex "counting" task.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.