Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

A randomized and fully discrete Galerkin finite element method for semilinear stochastic evolution equations (1801.08531v1)

Published 25 Jan 2018 in math.NA and math.PR

Abstract: In this paper the numerical solution of non-autonomous semilinear stochastic evolution equations driven by an additive Wiener noise is investigated. We introduce a novel fully discrete numerical approximation that combines a standard Galerkin finite element method with a randomized Runge-Kutta scheme. Convergence of the method to the mild solution is proven with respect to the $Lp$-norm, $p \in [2,\infty)$. We obtain the same temporal order of convergence as for Milstein-Galerkin finite element methods but without imposing any differentiability condition on the nonlinearity. The results are extended to also incorporate a spectral approximation of the driving Wiener process. An application to a stochastic partial differential equation is discussed and illustrated through a numerical experiment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.