Papers
Topics
Authors
Recent
2000 character limit reached

Coadjoint Orbits, Cocycles and Gravitational Wess-Zumino (1801.07963v2)

Published 24 Jan 2018 in hep-th

Abstract: About 30 years ago, in a joint work with L. Faddeev we introduced a geometric action on coadjoint orbits. This action, in particular, gives rise to a path integral formula for characters of the corresponding group $G$. In this paper, we revisit this topic and observe that the geometric action is a 1-cocycle for the loop group $LG$. In the case of $G$ being a central extension, we construct Wess-Zumino (WZ) type terms and show that the cocycle property of the geometric action gives rise to a Polyakov-Wiegmann (PW) formula. In particular, we obtain a PW type formula for the Polyakov's gravitational WZ action. After quantization, this formula leads to an interesting bulk-boundary decoupling phenomenon previously observed in the WZW model. We explain that this decoupling is a general feature of the Wess-Zumino terms obtained from geometric actions, and that in this case the path integral is expressed in terms of the 2-cocycle which defines the central extension. In memory of our teacher Ludwig Faddeev.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.