Papers
Topics
Authors
Recent
2000 character limit reached

Khovanov homology detects the trefoils

Published 23 Jan 2018 in math.GT and math.SG | (1801.07634v2)

Abstract: We prove that Khovanov homology detects the trefoils. Our proof incorporates an array of ideas in Floer homology and contact geometry. It uses open books; the contact invariants we defined in the instanton Floer setting; a bypass exact triangle in sutured instanton homology, proven here; and Kronheimer and Mrowka's spectral sequence relating Khovanov homology with singular instanton knot homology. As a byproduct, we also strengthen a result of Kronheimer and Mrowka on $SU(2)$ representations of the knot group.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.