Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving TSP Solutions Using GA with a New Hybrid Mutation Based on Knowledge and Randomness (1801.07233v1)

Published 22 Jan 2018 in cs.NE

Abstract: Genetic algorithm (GA) is an efficient tool for solving optimization problems by evolving solutions, as it mimics the Darwinian theory of natural evolution. The mutation operator is one of the key success factors in GA, as it is considered the exploration operator of GA. Various mutation operators exist to solve hard combinatorial problems such as the TSP. In this paper, we propose a hybrid mutation operator called "IRGIBNNM", this mutation is a combination of two existing mutations, a knowledge-based mutation, and a random-based mutation. We also improve the existing "select best mutation" strategy using the proposed mutation. We conducted several experiments on twelve benchmark Symmetric traveling salesman problem (STSP) instances. The results of our experiments show the efficiency of the proposed mutation, particularly when we use it with some other mutations. Keyword: Knowledge-based mutation, Inversion mutation, Slide mutation, RGIBNNM, SBM.

Citations (10)

Summary

We haven't generated a summary for this paper yet.