Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

List strong edge-coloring of graphs with maximum degree 4 (1801.06758v1)

Published 21 Jan 2018 in math.CO

Abstract: A strong edge-coloring of a graph $G$ is an edge-coloring such that any two edges on a path of length three receive distinct colors. We denote the strong chromatic index by $\chi_{s}'(G)$ which is the minimum number of colors that allow a strong edge-coloring of $G$. Erd\H{o}s and Ne\v{s}et\v{r}il conjectured in 1985 that the upper bound of $\chi_{s}'(G)$ is $\frac{5}{4}\Delta{2}$ when $\Delta$ is even and $\frac{1}{4}(5\Delta{2}-2\Delta +1)$ when $\Delta$ is odd, where $\Delta$ is the maximum degree of $G$. The conjecture is proved right when $\Delta\leq3$. The best known upper bound for $\Delta=4$ is 22 due to Cranston previously. In this paper we extend the result of Cranston to list strong edge-coloring, that is to say, we prove that when $\Delta=4$ the upper bound of list strong chromatic index is 22.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.