Papers
Topics
Authors
Recent
Search
2000 character limit reached

Epimorphisms, definability and cardinalities

Published 20 Jan 2018 in math.LO | (1801.06647v2)

Abstract: Generalizing a theorem of Campercholi, we characterize, in syntactic terms, the ranges of epimorphisms in an arbitrary class of similar first-order structures (as opposed to an elementary class). This allows us to strengthen a result of Isbell, as follows: in any prevariety having at most s non-logical symbols and an axiomatization requiring at most m variables, if the epimorphisms into structures with at most m + s + aleph0 elements are surjective, then so are all of the epimorphisms. Using these facts, we formulate and prove manageable "bridge theorems", matching the surjectivity of all epimorphisms in the algebraic counterpart of a logic L with suitable infinitary definability properties of L, while not making the standard but awkward assumption that L comes furnished with a proper class of variables.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.