Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PTB-TIR: A Thermal Infrared Pedestrian Tracking Benchmark (1801.05944v3)

Published 18 Jan 2018 in cs.CV

Abstract: Thermal infrared (TIR) pedestrian tracking is one of the important components among numerous applications of computer vision, which has a major advantage: it can track pedestrians in total darkness. The ability to evaluate the TIR pedestrian tracker fairly, on a benchmark dataset, is significant for the development of this field. However, there is not a benchmark dataset. In this paper, we develop a TIR pedestrian tracking dataset for the TIR pedestrian tracker evaluation. The dataset includes 60 thermal sequences with manual annotations. Each sequence has nine attribute labels for the attribute based evaluation. In addition to the dataset, we carry out the large-scale evaluation experiments on our benchmark dataset using nine publicly available trackers. The experimental results help us understand the strengths and weaknesses of these trackers.In addition, in order to gain more insight into the TIR pedestrian tracker, we divide its functions into three components: feature extractor, motion model, and observation model. Then, we conduct three comparison experiments on our benchmark dataset to validate how each component affects the tracker's performance. The findings of these experiments provide some guidelines for future research. The dataset and evaluation toolkit can be downloaded at {https://github.com/QiaoLiuHit/PTB-TIR_Evaluation_toolkit}.

Citations (113)

Summary

We haven't generated a summary for this paper yet.