Papers
Topics
Authors
Recent
2000 character limit reached

Predicting Movie Genres Based on Plot Summaries

Published 15 Jan 2018 in cs.CL, cs.LG, and stat.ML | (1801.04813v1)

Abstract: This project explores several Machine Learning methods to predict movie genres based on plot summaries. Naive Bayes, Word2Vec+XGBoost and Recurrent Neural Networks are used for text classification, while K-binary transformation, rank method and probabilistic classification with learned probability threshold are employed for the multi-label problem involved in the genre tagging task.Experiments with more than 250,000 movies show that employing the Gated Recurrent Units (GRU) neural networks for the probabilistic classification with learned probability threshold approach achieves the best result on the test set. The model attains a Jaccard Index of 50.0%, a F-score of 0.56, and a hit rate of 80.5%.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.