Papers
Topics
Authors
Recent
2000 character limit reached

The visual boundary of hyperbolic free-by-cyclic groups

Published 15 Jan 2018 in math.GT and math.GR | (1801.04750v1)

Abstract: Let $\phi$ be an atoroidal outer automorphism of the free group $F_n$. We study the Gromov boundary of the hyperbolic group $G_{\phi} = F_n \rtimes_{\phi} \mathbb{Z}$. We explicitly describe a family of embeddings of the complete bipartite graph $K_{3,3}$ into $\partial G_\phi$. To do so, we define the directional Whitehead graph and prove that an indecomposable $F_n$-tree is Levitt type if and only if one of its directional Whitehead graphs contains more than one edge. As an application, we obtain a direct proof of Kapovich-Kleiner's theorem that $\partial G_\phi$ is homeomorphic to the Menger curve if the automorphism is atoroidal and fully irreducible.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.