Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Renewal in Hawkes processes with self-excitation and inhibition (1801.04645v2)

Published 15 Jan 2018 in math.PR

Abstract: This paper investigates Hawkes processes on the positive real line exhibiting both self-excitation and inhibition. Each point of this point process impacts its future intensity by the addition of a signed reproduction function. The case of a nonnegative reproduction function corresponds to self-excitation, and has been widely investigated in the literature. In particular, there exists a cluster representation of the Hawkes process which allows to apply results known for Galton-Watson trees. In the present paper, we establish limit theorems for Hawkes process with signed reproduction functions by using renewal techniques. We notably prove exponential concentration inequalities, and thus extend results of Reynaud-Bouret and Roy (2007) which were proved for nonnegative reproduction functions using this cluster representation which is no longer valid in our case. An important step for this is to establish the existence of exponential moments for renewal times of M/G/infinity queues that appear naturally in our problem. These results have their own interest, independently of the original problem for the Hawkes processes.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.