Papers
Topics
Authors
Recent
2000 character limit reached

Shapley effects for sensitivity analysis with dependent inputs: bootstrap and kriging-based algorithms

Published 10 Jan 2018 in math.ST and stat.TH | (1801.03300v1)

Abstract: In global sensitivity analysis, the well known Sobol' sensitivity indices aim to quantify how the variance in the output of a mathematical model can be apportioned to the different variances of its input random variables. These indices are based on the functional variance decomposition and their interpretation become difficult in the presence of statistical dependence between the inputs. However, as there is dependence in many application studies, that enhances the development of interpretable sensitivity indices. Recently, the Shapley values developed in the field of cooperative games theory have been connected to global sensitivity analysis and present good properties in the presence of dependencies. Nevertheless, the available estimation methods don't always provide confidence intervals and require a large number of model evaluation. In this paper, we implement a bootstrap sampling in the existing algorithms to estimate confidence intervals of the indice estimations. We also proposed to consider a metamodel in substitution of a costly numerical model. The estimation error from the Monte-Carlo sampling is combined with the metamodel error in order to have confidence intervals on the Shapley effects. Besides, we compare for different examples with dependent random variables the results of the Shapley effects with existing extensions of the Sobol' indices.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.