Papers
Topics
Authors
Recent
Search
2000 character limit reached

Distributed Deep Reinforcement Learning: Learn how to play Atari games in 21 minutes

Published 9 Jan 2018 in cs.AI | (1801.02852v2)

Abstract: We present a study in Distributed Deep Reinforcement Learning (DDRL) focused on scalability of a state-of-the-art Deep Reinforcement Learning algorithm known as Batch Asynchronous Advantage ActorCritic (BA3C). We show that using the Adam optimization algorithm with a batch size of up to 2048 is a viable choice for carrying out large scale machine learning computations. This, combined with careful reexamination of the optimizer's hyperparameters, using synchronous training on the node level (while keeping the local, single node part of the algorithm asynchronous) and minimizing the memory footprint of the model, allowed us to achieve linear scaling for up to 64 CPU nodes. This corresponds to a training time of 21 minutes on 768 CPU cores, as opposed to 10 hours when using a single node with 24 cores achieved by a baseline single-node implementation.

Citations (36)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.